第104章 数学不是那么简单..但也不难! (第1/19页)
一桶布丁提示您:看后求收藏(千千小说www.qbtxts.net),接着再看更方便。
第104章 数学不是那么简单..但也不难!
张树文犹豫了片刻,然后选择站了起来,走到乔喻的身边,随手将最后的板书擦掉,然后开始了现场讲解。
「Riemann—Roch定理是代数几何中的一个基本定理,用于描述代数曲线上某些函数或形式的维度。具体来说,Riemann—Roch定理适用于代数曲线X上的任意除子D,定理陈述代数曲线上与除子D相关联的函数空间L(D)的维数。
它的具体陈述就是(D)=deg(D) 1—g (K—D)。它有两个部分互为补充,描述了除子D与剩余部分K—D的平衡关系。但有特殊情况,当D的度数足够大时,(K—D)为零,所以这种情况下(D)=deg(D) 1—g,你明白这代表什么吗?」
「D的度数足够大,维数与度数就是线性关系。」乔喻立刻答道。「那么当D为零的时候..」
「(0)=1—g (....,张教授,我明白您的意思了....所以这部分的证明其实可以不用那么繁琐,因为亏格g(X)可以直接通过Riemann—Roch定理得出,咦,那这部分的证明就不那么麻烦了...让我想想..」
说完,乔喻拿起了粉笔,开始在黑板另一边书写。
「也就是说构建函数的时候....,dimQH1(Cp是量子化后的同调群维数,嗯,取决于曲线的亏格g和量子算..这部分可以通过计算典范因子,得到H1C)的维..所以分解后的维数关系直接就是dimQH1(Cp)=g·f(Q),张教授,您看这部分的推导这样对不对?」
张树文深吸了口气,让自己表情没有一丝动容,然后点了点头。
「太好了,那下一步就好证明...导出同调群的维数后,那么量子化同调群的维数越大,就代表曲线几何复杂性越高,曲线上的有理点个数就会受限,再加上Jacobian又能进一步影响有理点个数..