一桶布丁提示您:看后求收藏(千千小说www.qbtxts.net),接着再看更方便。
乔喻说的虽然简单,但很明显,想要做到这一点问题很多。
最简单的,模态路径跟量子态物理演化的映射能否严格对应?
所谓的量子不确定性原理,反应到描述量子态的数学曲线中,就代表看高维度。
毕竟数学跟物理对于维度的解释其实完全不同。物理上一维、两维、三维指的是空间的变化,但数学上的高维度代表的则是函数的参数空间或变量的维数。
简单来说就是数学维度就是各种变量的增加。
要对一个量子系统进行描述,就要引入更多的自由度。
一个系统需要多个独立的变量,包括位置、动量、能量、速度等等,这些变量共同定义一个高维状态空间。这个空间跟物理空间毫不相关。
虽然物理的高维度可以通过适当的映射关系转化为数学的变量维度,高维拓扑结构可以描述量子态的复杂性,但需要指出具体的映射方式。
就简单的想一想,彼得·舒尔茨便知道这个系统必然有成吨的问题需要解决。难怪这家伙一直说很忙,压根没时间理他。
于是彼得·舒尔茨摊了摊手,说道:「乔喻,我大概明白你的想法了!