一桶布丁提示您:看后求收藏(千千小说www.qbtxts.net),接着再看更方便。
把三个参数的表达直接带入后,就是:0=g·log(glog(g) g^2.log(e^g/2) g·g^3/2 到了这一步就已经只剩亏格g一个重要参数。
接下来就是最简单的化简工作:0=g·(log(g) log(log(g)) g3/2 g^5/2
三天日以继夜在电脑前忙碌之后,乔喻在2025年2月21日,周五晚上11点37分,终于在电脑上敲出了关于曲线有理数点预估的最终公式:N(X)sC(0)=0^gθ就是他设计的几何约束参数,g是亏格。
这个公式...果然很美!
欣赏了一阵之后,乔喻立刻开始著手验证,毕竟公式光美没用,必须得有用才行。他要做的是根据自己的公式来求其是否准确。
乔喻选了经典椭圆曲线y^2=x^3 x
根据BSD猜想已知条件可知曲线亏格为1,直接带入公式,然后化简得到的结果就是:0=5,嗯,5的1次方还是5。结论显然正确。
因为这就是经典的艾尔米特曲线,曲线上的有理数点,早在十多年前就已经有人计算过了。
接下来是莫德尔曲线、费马曲线的特殊情况、Kubert曲线的各种情况..都让乔喻试了个遍。
比如莫德尔曲线:y^2=x^3 k,k为整数。乔喻分别验证了k=—1,k=2等已知有限有理点的情况,结果都是正确的。